If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.18x^2-253700=0
a = 0.18; b = 0; c = -253700;
Δ = b2-4ac
Δ = 02-4·0.18·(-253700)
Δ = 182664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{182664}=\sqrt{36*5074}=\sqrt{36}*\sqrt{5074}=6\sqrt{5074}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5074}}{2*0.18}=\frac{0-6\sqrt{5074}}{0.36} =-\frac{6\sqrt{5074}}{0.36} =-\frac{\sqrt{5074}}{0.06} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5074}}{2*0.18}=\frac{0+6\sqrt{5074}}{0.36} =\frac{6\sqrt{5074}}{0.36} =\frac{\sqrt{5074}}{0.06} $
| 5(x-4)-9=-4x+9(x+2) | | g−3/7=2/7 | | -8x+13-2x=23 | | (2/3)x+10=-(1/3x)+12 | | x/42=7/5 | | (4x^2)-9x-28=0 | | 2(x=2)^2-4=28 | | 4.2=g/3.2 | | 2/3x+10=-1/3x+12 | | 4^x-3=11 | | x+(x.0.18)-(253.700)=0 | | 2y+(−23)=29 | | 10/y=3/13 | | 4(8x-4)=23 | | -3(1)-4y=12 | | 2y+(−23)=−10−(−39) | | 3(d-1)+4d=67 | | 2y+23=49 | | 3x+7+1/2x=0 | | 10n=3n-21 | | 7(6x-1)=47 | | 5x^2=-560 | | 2(4x+3)=2(3-1) | | (4/5)x+7=3 | | 5c+17=9(–c+12+3c) | | 7x+5-8x=-2x-6 | | 3x+2x=1500 | | 3/5x=56 | | 2v^2+17v+30=0 | | 3/5x=56-x | | k/3-7=2 | | 5+3x+37=6x+23-8x |